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ABSTRACT 

There are several requirements associated with data, information, and 

artificial intelligence/machine learning modeling used to develop insights and 

inform decisions. These requirements must be given careful consideration to 

enable the design, development, and deployment of a condition-based 

maintenance strategy as part of automation and work reduction opportunities 

within the integrated operation of the nuclear concept. This report identifies some 

of the important requirements that need to be considered as part of the data 

evolution for the condition-based maintenance application on a circulating water 

system in an nuclear power plant. The concept of data evolution converts data 

into information which in turn is converted into insight, decision, and action. An 

overview of artificial intelligence design, development, deployment, and 

operation principles is introduced to support the lifecycle of artificial intelligence 

technologies. Towards the end of the report, we discuss how this condition-based 

maintenance can be realized in a seamless digital environment. 

This report lays the foundation for developing more detailed industry 

guidance and a supporting data evolution path for other plant applications, like 

operations and plant support. These concepts will be developed as part of the 

path forward for ongoing research in Fiscal Year 2023. 
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DATA ARCHITECTURE AND ANALYTICS 
REQUIREMENTS FOR ARTIFICIAL INTELLIGENCE 

AND MACHINE LEARNING APPLICATIONS TO 
ACHIEVE SEAMLESS CONDITION-BASED 

MAINTENANCE 

1. INTRODUCTION AND MOTIVATION 

Operations and maintenance (O&M) activities are key aspects of ensuring the availability and 

reliability of energy generated by nuclear power plants (NPPs) [1],[2]. O&M costsɂincluding activities 

such as inspection, calibration, testing, and replacementɂare one of the major non-capital costs 

contributing to the overall operation costs of NPPs. There are three main maintenance strategies to ensure 

availability, reliability, and safety. These maintenance strategies are: (1) time-based periodic maintenance 

(referred to as preventive); (2) failure-based maintenance (referred to as corrective); and (3) condition-

based maintenance (CBM) (referred to as predictive). Over the years, the nuclear fleet has relied on time-

based and failure-based maintenance strategies across their structures, systems, and components (SSCs) to 

achieve high-capacity factors. This approach has also led to higher operating costs, presenting long-term 

economic sustainability challenges in the current energy market for the existing the fleet of light-water 

reactors. 

An ongoing research and development project titled Technology Enabled Risk-Informed Maintenance 

Strategy (TERMS) under the U.S. Department of Energyôs Light Water Reactor Sustainability (LWRS) 

Program is developing a well-constructed, risk-informed predictive maintenance (PdM) approach for the 

circulating water system (CWS) [3]. The research project is in collaboration with Public Service 

Enterprise Group (PSEG) Nuclear, LLC and takes advantage of advancements in data analytics, artificial 

intelligence (AI) and machine learning (ML), physics-informed modeling, and visualization. The research 

and development reported in References [3]ï[5] describe in detail an approach developed to map data to 

actions (also referred to as data evolution) as part of the risk-informed PdM strategy. 

Data evolution is a structured approach of transforming the embedded knowledge in heterogeneous 

data sources collected by NPPs across SSCs into usable information for decision-making with the human 

in the loop by mapping and managing the data. Data mapping refers to the pathways along which data 

flows. Data management refers to using appropriate structures, formats, tags, and transformation of those 

data. The structured approach may or may not include usage of AI/ML technologies as part of the 

modeling approach. In this research and report, AI/ML technologies are part of the modeling approach. 

Figure 1 represents the general schematic of data evolution across three plant applications: operation, 

maintenance, and support. Figure 2 presents a data evolution specific to plant maintenance that considers 

risk modeling and predictive modeling to achieve preventive maintenance optimization, CBM, and asset 

management. An example of data evolution for CBM of the CWS (Figure 3) is represented as a variant of 

the System Theoretic Accident Model and Process (STAMP) [6] and System Theoretic Process Analysis 

(STPA) [7]. For details on the core concept of STAMP and STPA, see Appendix A. 

In Figure 3, the CWS is a controlled process whose maintenance will be optimized to maximize 

availability and cost effectiveness. Multiple measurements (data) are collected at different temporal and 

spatial resolutions and with different formats (analog and digital). Data include real-time time series, 

static, text, visual, and others. Some of the analog data are digitized to be compatible with other digital 

data. These digital data are stored in a data hub and are analyzed using advanced data analysis techniques 
to develop fault signatures (i.e., digitalized information). The fault signatures are then used by AI/ML 

predictive models to diagnose and prognose the current and future health of the CWS, respectively. 
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Figure 1. A general schematic of data evolution for three plant applications. 

 

Figure 2. A general schematic of data evolution for plant maintenance application. 

Action refers to the decision to perform or defer maintenance based on the CWS health state. In Figure 3, 

there are several directions for the flow of information and actions to and from different users in the loop. 

In STAMP and STPA, these are analogous to controller and control actions. See Appendix A for details. 

There are several requirements associated with data, information, and AI/ML modeling used to 

develop insights and inform decisions. These requirements must be given careful consideration to enable 

the design, development, and deployment of a CBM strategy as part of automation and work reduction 

opportunities within the integrated operation of the nuclear concept [8]. This report focuses on identifying 

requirements for data evolution, where the CWS is the target system. However, the requirements 

developed in this report are generally applicable for the CBM of other plant SSCs with application-

specific updates. The CWS is briefly described here. For more CWS details, see [4]. 
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.  

Figure 3. An example of data evolution for CBM of the CWS. 

The CWS is an important non-safety-related system. As the heat sink for the main steam turbine and 

associated auxiliaries, the CWS at the Salem NPP is designed to maximize steam power cycle efficiency 

while minimizing any adverse impact on the Delaware River [9]. The CWS consists of the following 

major equipment [9]: 

¶ Six vertical, motor-driven circulating pumps (or ñcirculatorsò), each with an associated trash rack and 

traveling screen at the pump intake to remove debris and marine life 

¶ Main condenser 

¶ Condenser waterbox air removal system 

¶ Circulating water sampling system 

¶ Screen wash system 

¶ Necessary piping, valves, and instrumentation and controls to support system operation. 

Figure 4 shows the pair of waterboxes associated with Condenser 1 of Unit 1 (i.e., 11A and 11B). 

Each of the two plant units has one main condenser with six waterboxes, circulators, trash racks, and 

traveling screens. For a functional description of the CWS, along with any other relevant details, see 

Reference [9]. Figure 5 shows different locations on the circulating water pump (CWP) motor where 

measurements are continuously collected as part of the plant OSIsoft PI historian. 

In this report, Chapter 2 presents requirements associated with data collected for CBM. Chapter 3 

briefly introduces the concept of information automation. Chapter 4 presents some the design, develop, 

deploy, and operate principles of AI/ML technologies. Chapter 5 briefly introduces the concept of a 

seamless digital environment. A report summary and the path forward are in Chapter 6. 
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Figure 4. Schematic representation of the CWS at Salem Unit 1. 

2. DATA 

Data creates the underlying foundation for any work performed under CBM at a plant site, as the data 

drives the analytics and insight generation and review, as well as resulting actions or services. As the data 

utilized for the CBM application are diverse and sourced from many different locations, the structures 

used to store, retrieve, and modify the data must be suitable for the intended application. Each type of 

data has different requirements related to accuracy, reliability, responsiveness, accessibility, and 

integration into developed services and tools. 

We collected data in an NPP at different resolutions and in a variety of formats using the following 

definitions for consistency. Raw data is the direct and original data generated at a source without any 

preprocessing. This raw data may be in a variety of formats, including numeric, handwritten text, audio, 

video, and visual. Raw data can be in analog or digital formats. There are technologies available to 

transform analog data into digital data (i.e., digitize). This in some ways standardizes the storage and 

processing requirements. In addition, data can be collected asynchronously, synchronously, and statically 

with time. 

Data is asynchronous when the data collection is randomly delayed from the request to collect data or 

has no consideration for the timing within a process or event. Asynchronous data can be taken 

periodically. Manual surveillances are a good example of periodic asynchronous data. 

Data is synchronous when the data collection is based on clock timing or is planned to coincide with 

the timing within a process or event. A good example of this is online collecting vibration or audio data. 

Although synchronous data is usually thought of being continuous within a finite time window, 

synchronized data can be collected on an aperiodic basis. In general, synchronous data requires 

significantly more storage space and computing power than asynchronous data. 

Static data are intentionally set values by operators or other authorized personnel that are to remain in 

effect until they are changed. Examples of static data are process set points, process limits, and safety 

limits. Static data are usually used as checks on live sensor data to ensure efficient and safe operation. 
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Figure 5. Schematic representation of a CWS motor and pump, along with measurement locations. 

Collected asynchronous, synchronous, and static data must be reconcilable based on physical 

constraints to eliminate erroneous measurements and enhance data quality. In practice, data quality issues 

often directly impact information extraction and AI/ML model performance. Some of these aspects of 

data will be discussed in following sections of this report. 

2.1 Data Types  

To support the CBM of the PSEG-owned CWS, we received data from the Salem NPP presented in 

Sections 2.1.1, 2.1.2, and 2.1.3. 

2.1.1 Process Data  

The Unit 1 and 2 CWS process data are collected once every minute and stored in the Salem plantôs 

OSI PI system. The raw process data from the plant first available includes: 

¶ Gross load (MWe) 

¶ River level (ft) 

¶ Ambient air temperature (°F) 

¶ CWP inlet river temperature (°F) 

¶ CWP outlet water temperature (°F) 

¶ CWP motor status (ON or OFF) 

¶ CWP motor stator winding temperature (°F) 

¶ CWP motor inboard bearing temperature (°F) 

¶ CWP motor outboard bearing temperature (°F) 

Pump

Outer cover

Outboard-bearing temperature

Stator winding temperature

Inboard-bearing temperature

Coupling
Ground

Power source

Motor axial vibration

Motor outboard-bearing vibration

Motor inboard-bearing vibration
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¶ CWP motor current (amps) 

After an upgrade in 2015, continuously monitored measurement parameters associated with the main 

condenser for both Unit 1 and 2 have been available. The main condenser parameters for Unit 1 are listed 

below (the same parameters are available for Unit 2). 

¶ CWP 11AB outlet temperature (°F) 

¶ CWP 12AB outlet temperature (°F) 

¶ CWP 13AB outlet temperature (°F) 

¶ Main Condenser Backpressure 1 

¶ Main Condenser Backpressure 2 

¶ Low Pressure Turbine 11 exhaust temperature (°F) 

¶ Low Pressure Turbine 12 exhaust temperature (°F) 

¶ Low Pressure Turbine 13 exhaust temperature (°F) 

¶ Low Pressure Turbine 11 exhaust hood temperature (°F) 

¶ Low Pressure Turbine 12 exhaust hood temperature (°F) 

¶ Low Pressure Turbine 13 exhaust hood temperature (°F) 

¶ Condensate 11AB hot well temperature (°F) 

¶ Condensate 12AB hot well temperature (°F) 

¶ Condensate 13AB hot well temperature (°F) 

¶ Vacuum pumps status. 

Along with the process data, the CWP inlet pressure is collected every 12 hours in the electronic Shift 

Operations Management System. 

2.1.2 Work Order Data  

The collected CWS data contain metadata related to plant processes, maintenance logs, operator logs, 

work order (WO) documents, and condenser information. WOs for Salem Unit 1 and 2 CWSs contain 

useful information, including preventive maintenance (PM) and corrective maintenance WOs. 

PM WOs are planned maintenance activities performed on a predetermined frequency based on the 

engineering review and maintenance strategy for a given type of equipment. Corrective maintenance WOs 

are reactive maintenance to resolve a nonconforming condition, such as a degradation or failure. Both 

types of maintenance activities are documented in WOs. 

The details in a WO vary across the plant site, but at a minimum, they contain information such as 

WO number, order type, maintenance activity type, functional or equipment location, description, priority 

level, and approximate start and end date. For this reason, natural language processing (NLP) techniques 

are used to analyze WO database and categorize the resulting information. The CWS WOs can be used to 

perform parameter estimation as part of the risk modeling and PM optimization. For details, see 

Reference [10]. 

WO data NLP allows for effective and quick feedback on how well the maintenance activity or 

replaced component is working and its effect on the CWS. The replacement or refurbishment of a major 
asset, like a pump or motor, usually changes the baseline of the CWS process measurements. The ability 

to quickly identify, track, and compare significant baseline can help determine when maintenance actions 

were taken. WO NLP would help enable this capability. 
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2.1.3 Vibration Data  

Online vibration data is an excellent example of synchronous data. Installing wireless vibration sensor 

nodes (VSNs) on CWP motors allows for continuous online monitoring. Sixty sensor nodes [4],[11] were 

installed across 12 CWP motors and associated bypass valves. Three wireless VSNs were installed at the 

plant site on each CWP motor (as depicted in Figure 5), and two VSNs were installed on each associated 

CWP bypass valve. The three VSNs installed on the CWP motors are referred as motor axial vibration, 

motor outboard bearing vibration, and motor inboard bearing vibration. The placement of the transducers 

on the CWP motors and bypass valves can be found in Reference [10]. Each sensor node consists of a 

temperature sensor and two accelerometers sensitive to orthogonal in-plane motions. The sensor nodes are 

mounted on the plant asset via a magnetic base in the node. 

The vibration data consists of metadata, such as date (YYYY-MM-DD), time (in the Coordinated 

Universal Time format), and sampling rate of the vibration signal. The vibration signal is collected for 

3.2 seconds at a sampling rate of 512 samples/second. For these sampling conditions, this works out to be 

1.64 K of data per sampling period. Multiply this by 60 sensors, and this becomes 10 K of data per 

sample period. The data storage needs on a yearly basis for a periodic sample every hour would be on the 

order of 860 MB. Thus, the data storage infrastructure needs to be designed to handle this accumulation 

of data over the years. The vibration signal can be collected for different lengths of time and at higher 

sampling rates (up to 2,056 samples/second), which can push data storage needs significantly higher. 

Figure 6 shows representative vibration signals for both X and Y directions from the VSN located on the 

motor axial position. 

 

Figure 6. Vibration measurement collected at location motor inboard on a CWP motor for X and Y VSN 

directions. 

2.1.4 Data Ingest  

This section covers considerations of the data ingest required as the foundation for performing data 

analytics. The data ingest method should consider the specific use case(s) applicable to the data. 

The best starting point for designing data ingest resources for a data analytics platform, see the data 

analytics box in Figure 3, is to verify that the data refresh frequency aligns with the frequency at which 

analytics are performed. For services that require real-time or near-real-time data in order to provide 

instant results and allow stakeholder organizations to respond immediately, the data ingest needs to match 

this frequency in order to support the intended responsiveness. Other analytics may not require real-time 

data, as they provide long-term trending insights or support processes that allow for slower response 
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times. The intended frequency of data receipt is important in designing a streamlined process and is an 

important cost consideration. A delivery center platform can use both real-time sensor data and plant 

enterprise data extracted on a predetermined frequency (i.e., daily, weekly, or monthly) to identify 

insights into plant condition and processes. 

It could be expensive to receive streaming data, as most cloud providers charge for the data 

transferred as well as the number of unique requests. The process of transmitting streaming data sends 

data requests as the data is received, resulting in a higher cost than data batch processing on an hourly or 

daily basis. Furthermore, an additional processing cost needs to be considered. Repositories or storage 

locations for streaming data are constantly changing. Processes for analyzing data must be designed in 

alignment with the frequency of data input (real-time or batch processes). 

2.2 Data Hub and Data  Quality  Requirements  

In this section, we discuss some of the requirements to be considered when developing the data hub 

used to store and process the collected data. The section also discusses certain requirements that data must 

fulfil l as they are used for data analysis and predictive model development. 

2.2.1 Digital  Hub for Automated Access  

It is critical that the infrastructure for handling and maintaining data be considered prior to 

implementing data analytics (as shown in Figure 3). The following is a list of primary considerations for 

data ingest, storage, and preprocessing: 

¶ Identify security requirements to implement a security architecture that prevents unauthenticated or 

unauthorized access 

¶ Understand the types of data required for analysis (e.g., time series, logs, WO, resource utilization) 

¶ Understand the frequency at which data analytics must be performed to support stakeholder response 

¶ Create ñsingle-source-of-truthò verified data repositories that can interact with analytics models and 

AI tools 

¶ Identify and plan for scaling needs, based on the full data quantities to be ingested 

¶ Understand the costs and benefits of various technologies that handle large datasets. 

2.2.2 Data Quality  

As noted earlier, data quality issues often impact data analysis and model performance. Data quality 

issues can arise due to a number of reasons, including: 

¶ How data is captured, transmitted, and stored 

¶ Missing or incomplete data 

¶ Inconsistencies between data sources (i.e., sensor measurement, maintenance record, and operation 

logs) 

¶ Incorrect sensor settings and outliers (i.e., incorrect sensitivity, out of calibration, incorrect 

orientation, or incorrect sensor placement) 

¶ Duplicate data 

¶ Incorrect labeling 

¶ Noisy data 

¶ Human errors. 
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These data quality issues must be addressed. There are several ways to address data quality issues. 

Redundancy from multiple measurement sources on a system may address some of these issues but 

introduces new challenges, such as handling different timestamps and highly correlated data. There are 

several data quality measurement and improvement frameworks proposed and implemented for 

maintenance data [12]ï[14]. The framework developed by Jai et al. [13] included recommended metrics 

for evaluating the suitability of the data for the purpose of diagnostic and prognostic model development. 

Griffith et al. [15] recommend best practices to align the time series variable, addressing sensors having 

different sampling rates and integrating contextual data sources with time series data. Lukens et al. [16] 

presented a data quality scorecard for assessing the suitability of data for diagnostics and prognostic 

modeling. 

2.2.3 Data Balance  

Imbalanced data is a form of between-class imbalance that arises when the number of samples in one 

data class dominates the samples in a smaller class [17]. This causes ML models to be more biased 

towards the predominant class. Omri et al. [17] present a metric to quantify data imbalance. Data 

balancing is a process to address the imbalance in data by using the Synthetic Minority Oversampling 

Technique [18], an oversampling method for imbalanced classification [19], or data augmentation with a 

balanced Generative Adversarial Network [20]. 

Class data sets generated from industrial processes are inherently imbalanced. For example, plants 

that are efficient, produce quality products, and have robust operations, by definition, spend the majority 

of the time in normal states. There can be multiple process states that can be classified as normal 

operations, such as startup, shut down, hold, and production. The abnormal states caused by equipment 

failures, events and asset wear occur randomly over long timeframes. Thus, process data sets are 

dominated by normal states of operation. 

If this imbalance of normal data sets is not addressed by balancing the data sets prior to performing 

data analytics, the ML models will not be as accurate and tend to skew resulting classifications toward 

normal operating states. The imbalance may also obfuscate both superior and inferior operational states 

by blurring the fidelity of the ML models. Most industrial processes are complex and contain hysteresis 

(i.e., dependence on history) in process parameters during the transition between states. The ability to 

identify and classify these transitional data sets will help increase the effectiveness of classification and 

predictions by providing data classification sets that are more balanced. This leads to natural balancing 

since there will be more classes of process states that are considered normal for the same amount of data. 

The resulting increase in ML model fidelity from a better data balance will provide a means to identify, 

track, and predict complex state changes in processes. 

2.2.4 Data Reconciliation  

In practice, sensor measurements are noisy and have random errors, as identified as part of the 

discussion on data quality issues. Data filtering and reconciliation are two approaches used to address 

these data quality issues. One type of data filtering is the process of attenuating high-frequency 

components in the signal. Filtering can also target specific frequency bands if there is a reason to believe 

that the measurement noise is narrow band. On the other hand, data reconciliation is a data filtering and 

reconstruction technique that explicitly uses process constraints to eliminate erroneous measurements. 

These constraints normally include mass balance, energy balance, and material and flow balance. 

Graphically, the data reconciliation process can be represented as shown in Figure 7. 
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Figure 7. Schematic diagram of the data reconciliation process [21]. 

In the data reconciliation process, raw process variables can be classified according to the diagram in 

Figure 8 [21]. The first dichotomy is between measured and unmeasured variables. This dichotomy is 

based on the availability of sensor modalities to measure specific process variables (flow rates, pressures, 

concentrations). Obviously, due to economical and physical constraints, not all process variables can be 

measured. In reality, the majority of process variables are unmeasured; these variables are instead 

estimated through measured process variables. Further, the measured variables are dichotomized into 

redundant and nonredundant. Redundant variables can be estimated from other measured variables using 

the process models. If a variable is redundant, it doesnôt have to be measured, although quite often 

engineering systems have numerous redundant measurements due to reliability considerations. The 

redundant measured variables are further split into spatially redundant and temporarily redundant. A 

measured redundant variable can be spatially or temporally redundant. A measurement is spatially 

redundant if its value can be completely and uniquely determined through measurements taken in other 

places and process model constraints. Flow measurements, for example, are often spatially redundant. 

The other type of redundancy exploited in data reconciliation algorithms is temporal redundancy, for 

when the process is predictable enough for its current or future values to be inferred from past values. 

Notice that spatial and temporal redundancy is only applicable to measured variables. 

Data reconciliation cannot be performed without having spatial redundancy [22]. If there is no spatial 

redundancy, the system is determined or underdetermined and no unique measurement correction is 

possible. An equally important concept is the dichotomy of unmeasured variables into observable and 

non-observable. The unmeasured variable is observable if it can be estimated from measured variables 

and process models constraints, otherwise, the variable is non-observable. It should be noted that all 

measured variables are observable; redundant observable measured variables are redundant even if the 

measurement is unavailable [21],[22]. Observability and redundancy analyses are an integral part of the 

data reconciliation process [21],[22]. 
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Figure 8. Dichotomy of variables in the data reconciliation process [21]. 

Another important aspect of the data reconciliation process is stationarity of a plantôs operation. The 

majority of data reconciliation algorithms assume that the plant is in a steady state and thus stationary 

process models can be applied. However, quite often, it is necessary to reconcile the data during transient 

processes. Transient data reconciliation is a research gap that needs to be filled for an efficient 

implementation of data reconciliation strategies in NPPs. 

For the data reconciliation approach to be effective, it should also address the systematic or gross 

errors that often happen during the recordkeeping of a plantôs operational history. Similar to data 

reconciliation in the presence of random errors, gross error detection and elimination also requires an 

availability of constraints and redundant measurements. Normally gross errors are caused by two reasons: 

a combination of material loss such as piping leaks and either malfunctioning sensors or erroneous 

record-keeping. Dealing with gross errors requires addressing several interconnected problems, such as 

error detection, localization, identification, and correction. The detection problem is usually solved using 

statistical techniques of outlier detection. Having detected the gross error, the next step is identification, 

which is usually solved by calculating a sample statistic for each measurement and detecting values 

exceeding a preselected threshold. Error correction requires availability of redundant measurements, 

similar to data reconciliation, so the gross error can be replaced with an estimate from a redundant 

measurement. A general pipeline for first-principles-informed ML for CBM is shown in Figure 9. 
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Figure 9. Steps to achieve CBM using ML [22]. 

As can be seen in Figure 9, data reconciliation and gross error detection is only a part of the data 

conditioning process necessary to achieve trustable and explainable solutions for CBM using ML 

approaches. 

2.2.5 Data Completeness  

Data completeness can be viewed from many perspectives, leading to different definitions. In 

Reference [23], data completeness is expressed as ñthe extent to which data are of sufficient breadth, 

depth and scope for the task at hand.ò Reference [24] identifies three types of completeness. Schema 

completeness is defined as the degree to which entities and attributes are not missing from the schema. 

Column completeness, at a data level, is a function of the missing values in a table column. This 

measurement corresponds to Coddôs column integrity [25], which assesses missing values. A third type is 

called population completeness with respect to a reference population. In the case of CWS CBM [10], 

they assessed all three forms of completeness. However, the data required to generate representative fault 

signatures for different faults modes were incomplete and did not meet the population completeness 

requirements. 
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3. INFORMATION AUTOMATION  

Information automation is the moving information and data from one underlying application to the 

other, supporting user decision-making. The information automation construct can be visualized in the 

context of a STAMP and STPA control loop simply as the arrows (i.e., Ÿ ŷ Ŷ Ź) in Figure 3. 

Sometimes the movement of data and information in some commercial NPPs still occurs manuallyð

meaning that the dynamic interaction between the controller and controlled process is done without the 

assistance of advanced automation. 

For example, auxiliary or field operators currently perform manual walkdowns of the entire NPPôs 

secondary infrastructure for inspections, security purposes, and reading and recording gauge values (e.g., 

surveillances). LWRS Program researchers have developed drones that can navigate their way around the 

plant to automate some of these manual activities, including inspecting hazardous locations. Computer 

vision solutions were developed and added to the drones to automate accurate gauge readings, even at 

oblique angles, thereby enabling an automation of gauge calibration and peer verification. 

Another example of information automation is the wireless valve position indication (VPI) sensor 

technology developed by LWRS Program researchers [26],[27]. A significant amount of work manually 

performed at NPPs relates to ensuring or verifying that manually performed activities were accomplished 

correctly. For example, there are approximately 150ï200 valves in a current commercial NPP that must 

be manually positioned and then verified, either independently or concurrently. The VPI technology 

enables the online monitoring and digital verification of valve positions, eliminating the need for manual 

verification. This technology can be nonintrusively retrofitted on valves without requiring them to be 

recalibrated or recertified. The technology also eliminates the need for periodic calibration. By 

automating this manual activity (i.e., enabling information automation), the wireless VPI sensor system 

provides continuously available and easily collectable verification data. 

Information automation is also exemplified in LWRS Program research to detect degradation within 

NPP piping systems. The piping system is a critical NPP component, and maintaining this system is 

challenging due to the difficulty and high costs of assessing the extent to which it may have degraded 

[28]. During scheduled refueling outages, sections of the piping system are periodically inspected for 

degradation. For the reasons stated above, it is difficult to decide which sections to inspect. This problem 

is compounded by the amount of piping in an NPP. With safety in mind, the nuclear industry takes a 

conservative approach to piping inspections, but this likely leads to unnecessary inspections being 

performed, thus increasing the amount of downtime and affecting the economic competitiveness of the 

NPP. To address this, Gribok et al. [28] developed distributed fiber sensors that can withstand harsh NPP 

environments and continuously collect high-spatial-resolution data from throughout the entire plant. The 

data collected by the fiber sensors are analyzed [28] to identify pipe defects and assess pipe health (i.e., 

information automation). 

A final example of information automation is the digitalization of paper-based procedures into 

computer-based procedures and electronic work packages [29]. The nuclear power industry is highly 

proceduralized in that very few critical work activities are performed by skill-of-the-craft. The paper-

based procedures currently used by industry have a proven track record of ensuring safety, but they also 

present an excellent opportunity to apply information automation to O&M activities. Automating 

information in procedures by using computer-based procedures and electronic work packages means that 

information can be more dynamically presented, thereby enabling the operator to be better integrated into 

the work process and concept of operation, which then leads to increases in overall work efficiency and 

improvements in plant safety. 

Some of the requirements considered for information automation are: 

¶ Information Infrastructure: The infrastructure for handling and maintaining information must be 

considered prior to implementing information automation, including: 
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- Availability: The degree to which the information infrastructure can support the frequency at 

which information automation is needed and be used to support a controllerôs ability to generate 

insights, make recommendations, and make decisions. 

- Timeliness: Requirements for how quickly automation information needs to be processed and 

made available to controllers (i.e., latency times in processing and converting data into 

information). 

- Information Quality and Integrity: Requirements for maintaining the quality and integrity of the 

information used. For example, an aspect of quality is the ratio of credible information to ñnoiseò 

in the information. Additionally, a ñsingle-source-of-truthò verified information repository for 

information storage is needed. 

- Scalability: The plan for scaling the needs of the information infrastructure based on projected 

use of automated information. 

¶ Information Security and Controls: Identify the security requirements and implement a security 

architecture that prevents unauthenticated or unauthorized access. 

¶ Information Characteristics: Identify and understand the characteristics of information used in 

analyses that automate information gathering, including: 

- Source: Requirements that specify how the information was acquired or derived from the data. 

- Format: Requirements that describe the general arrangement of the information. 

- Structure: Requirements that describe the general organization of the information. 

- Completeness: Requirements that characterize the scope the information covers. 

- Accuracy and Credibility: Requirements that describe the extent to which the information can be 

trusted. 

¶ Transformation Rules: Requirements specifying how data will be converted into information, 

including: 

- Relevance: Requirements that describe what kinds of data will be used as the source for the 

derived information. 

- Data quality: Requirements describing the characteristics of data quality (e.g., readability, 

completeness, accuracy) needed to enable information automation. 

- Calculations: Requirements specifying what algorithms will be used in calculations needed to 

convert data into information. 

¶ Economic Considerations: Identify and understand the costs and benefits of various technologies that 

enable information automation. 

4. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: DESIGN, 
DEVELOP, DEPLOY, AND OPERATION PRINCIPLES  

The diagnostic and prognostic models developed as part of predictive modeling (Figure 2) for the 

CBM application take advantage of advancements in AI/ML technologies. There are numerous AI/ML 

models developed for CBM. However, despite recent impressive progress and success stories of applied 

ML, its actual use in the nuclear industry has been minimal. There are several reasons for such a 

reluctance to adopt AI/ML-based technologies in the nuclear industry. This section introduces the notion 

of RESET AI (Figure 10) that needs to be followed to lay the foundation for AI/ML technologies 

adoption in the nuclear industry. The notion of RESET AI is applicable to the design, development, 

deployment, and operation lifecycles of AI/ML technologies to optimize CBM in this report. However, 

the same principles are applicable for other applications, like plant operation and support (Figure 1) that 

use AI/ML tools. RESET AI is briefly elaborated in the following subsections. 
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Figure 10. Design, develop, deploy, and operate AI/ML technology requirements. 

4.1 Risk, Resilience, Robustness, and Reliability  

Risk assessment is one of the most important requirements for any technology development and 

implementation in the nuclear industry. AI/ML is not and should not be exempted from this requirement. 

Risk assessment considers the probability of failure, consequences of failure, and scenarios under which a 

failure could occur. To reap the benefits of AI/ML, it is important to understand the risks and potential 

consequences of AI/ML failures, the use of AI/ML for malevolent purposes, and scenarios under which 

an AI/ML algorithm would fail. The risk assessment and management of AI failure should also consider 

the interaction of AI/ML with humans, organizations, and with other digital (AI/ML) technologies. 

Reference [30] provides insights on types of AI failures, risk assessment, and risk perception. A 

framework for AI system risk management across a wide spectrum of applications and maturity has been 

developed by the National Institute of Standards Technologies [31]. 

AI resilience refers to the ability to absorb, adapt, and recover from any anomalous behavior of the AI 

technology itself or of the system within which the technology operates [32]. This anomalous behavior 

could occur as the AI technology interplays with other technologies or with humans. Therefore, AI 

technologies must be able to absorb, adapt, and recover from such anomalous behaviors without breaking 

down and requiring a complete rebuild. 

AI robustness is the ability of the AI technology to be invariant to any variations in hyperparameters 

or the data used for training purposes and ensure their estimates are within acceptable identification and 

prediction limits. It is very common in practical applications for training data to vary over time, as new 

data sources might become available or some of the existing data sources may be unavailable for a period 

of time. 

The purpose of the reliability requirement for an AI technology is to ensure that the technology 

performs as intendedðthat is, within specified limits and without any failure, it consistently produces the 

same outputs for the same inputs [33]. If the performance of an AI technology is not reproducible over 

time, not only will it impact reliability but also other requirements like robustness, explainability, 

trustworthiness, safety, security, and economics. 




























